Let X be a zero-dimensional, Hausdorff topological space and K a field with non-trivial, non-archimedean valuation under which it is complete. Then BC(X) is the vector space of the bounded continuous functions from X to K. We obtain necessary and sufficient conditions for BC(X), equipped with the strict topology, to be of countable type and to be nuclear in the non-archimedean sense.
@article{urn:eudml:doc:41198, title = {The non-archimedian space BC(X) with the strict topology.}, journal = {Publicacions Matem\`atiques}, volume = {38}, year = {1994}, pages = {187-194}, mrnumber = {MR1291960}, zbl = {0831.46082}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41198} }
De Grande-De Kimpe, Nicole; Navarro, Samuel. The non-archimedian space BC(X) with the strict topology.. Publicacions Matemàtiques, Tome 38 (1994) pp. 187-194. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41198/