Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.
@article{urn:eudml:doc:41197,
title = {R-trees and the Bieri-Neumann-Strebel invariant.},
journal = {Publicacions Matem\`atiques},
volume = {38},
year = {1994},
pages = {195-202},
mrnumber = {MR1291961},
zbl = {0829.20038},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41197}
}
Levitt, Gilbert. R-trees and the Bieri-Neumann-Strebel invariant.. Publicacions Matemàtiques, Tome 38 (1994) pp. 195-202. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41197/