Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant Σ(G), in terms of geometric abelian actions on R-trees. We provide a proof of Brown's characterization of Σ(G) by exceptional abelian actions of G, using geometric methods.
@article{urn:eudml:doc:41197, title = {R-trees and the Bieri-Neumann-Strebel invariant.}, journal = {Publicacions Matem\`atiques}, volume = {38}, year = {1994}, pages = {195-202}, mrnumber = {MR1291961}, zbl = {0829.20038}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41197} }
Levitt, Gilbert. R-trees and the Bieri-Neumann-Strebel invariant.. Publicacions Matemàtiques, Tome 38 (1994) pp. 195-202. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41197/