We prove that if a Riemann surface has a linear isoperimetric inequality and verifies an extra condition of regularity, then there exists a non-constant harmonic function with finite Dirichlet integral in the surface.
We prove too, by an example, that the implication is not true without the condition of regularity.
@article{urn:eudml:doc:41191, title = {Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.}, journal = {Publicacions Matem\`atiques}, volume = {38}, year = {1994}, pages = {243-253}, mrnumber = {MR1291966}, zbl = {0813.30034}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41191} }
Rodríguez, José M. Isoperimetric inequalities and Dirichlet functions of Riemann surfaces.. Publicacions Matemàtiques, Tome 38 (1994) pp. 243-253. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41191/