Let Ω be a bounded pseudo-convex domain in Cn with a C∞ boundary, and let S be the set of strictly pseudo-convex points of ∂Ω. In this paper, we study the asymptotic behaviour of holomorphic functions along normals arising from points of S. We extend results obtained by M. Ortel and W. Schneider in the unit disc and those of A. Iordan and Y. Dupain in the unit ball of Cn. We establish the existence of holomorphic functions of given growth having a "prescribed behaviour" in almost all normals arising from points of S.
@article{urn:eudml:doc:41189, title = {Approximation par des fonctions holomorphes \`a croissance contr\^ol\'ee.}, journal = {Publicacions Matem\`atiques}, volume = {38}, year = {1994}, pages = {269-298}, mrnumber = {MR1316628}, zbl = {0832.32015}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41189} }
Charpentier, Philippe; Dupain, Yves; Mounkaila, Modi. Approximation par des fonctions holomorphes à croissance contrôlée.. Publicacions Matemàtiques, Tome 38 (1994) pp. 269-298. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41189/