Non local reaction-diffusion equations modelling predator-prey coevolution.
Calsina, Angel ; Perelló, Carles ; Saldaña, Joan
Publicacions Matemàtiques, Tome 38 (1994), p. 315-325 / Harvested from Biblioteca Digital de Matemáticas

In this paper we examine a predator-prey system with a characteristic of the predator subject to mutation. The ultimate equilibrium of the system is found by Maynard-Smith et al. by the so-called ESS (Evolutionary Stable Strategy). Using a system of reaction-diffusion equations with non local terms, we conclude that ESS result for the diffusion coefficient tending to zero, without resorting to any optimization criterion.

Publié le : 1994-01-01
DMLE-ID : 3732
@article{urn:eudml:doc:41187,
     title = {Non local reaction-diffusion equations modelling predator-prey coevolution.},
     journal = {Publicacions Matem\`atiques},
     volume = {38},
     year = {1994},
     pages = {315-325},
     mrnumber = {MR1316630},
     zbl = {0834.92019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41187}
}
Calsina, Angel; Perelló, Carles; Saldaña, Joan. Non local reaction-diffusion equations modelling predator-prey coevolution.. Publicacions Matemàtiques, Tome 38 (1994) pp. 315-325. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41187/