In this paper we examine a predator-prey system with a characteristic of the predator subject to mutation. The ultimate equilibrium of the system is found by Maynard-Smith et al. by the so-called ESS (Evolutionary Stable Strategy). Using a system of reaction-diffusion equations with non local terms, we conclude that ESS result for the diffusion coefficient tending to zero, without resorting to any optimization criterion.
@article{urn:eudml:doc:41187, title = {Non local reaction-diffusion equations modelling predator-prey coevolution.}, journal = {Publicacions Matem\`atiques}, volume = {38}, year = {1994}, pages = {315-325}, mrnumber = {MR1316630}, zbl = {0834.92019}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41187} }
Calsina, Angel; Perelló, Carles; Saldaña, Joan. Non local reaction-diffusion equations modelling predator-prey coevolution.. Publicacions Matemàtiques, Tome 38 (1994) pp. 315-325. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41187/