Normal bases for the space of continuous functions defined on a subset of Zp.
Verdoodt, Ann
Publicacions Matemàtiques, Tome 38 (1994), p. 371-380 / Harvested from Biblioteca Digital de Matemáticas

Let K be a non-archimedean valued field which contains Qp and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn|n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq → K) is the Banach space of continuous functions from Vq to K, equipped with the supremum norm. Our aim is to find normal bases (rn(x)) for C(Vq → K), where rn(x) does not have to be a polynomial.

Publié le : 1994-01-01
DMLE-ID : 3729
@article{urn:eudml:doc:41183,
     title = {Normal bases for the space of continuous functions defined on a subset of Zp.},
     journal = {Publicacions Matem\`atiques},
     volume = {38},
     year = {1994},
     pages = {371-380},
     mrnumber = {MR1316633},
     zbl = {0840.46056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41183}
}
Verdoodt, Ann. Normal bases for the space of continuous functions defined on a subset of Zp.. Publicacions Matemàtiques, Tome 38 (1994) pp. 371-380. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41183/