Let P1, ..., Pd be commuting Markov operators on L∞(X,F,μ), where (X,F,μ) is a probability measure space. Assuming that each Pi is either conservative or invertible, we prove that for every f in Lp(X,F,μ) with 1 ≤ p < ∞ the averages
Anf = (n + 1)-d Σ0≤ni≤n P1 n1 P2 n2 ... Pd nd f (n ≥ 0)
converge almost everywhere if and only if there exists an invariant and equivalent finite measure λ for which the Radon-Nikodym derivative v = dλ/dμ is in the dual space Lp'(X,F,μ). Next we study the case in which exists p1, with 1 ≤ p1 ≤ ∞, such that for every f in Lp(X,F,μ) the limit function belongs to Lp1 (X,F,μ). We give necessary and sufficient conditions for this problem.
@article{urn:eudml:doc:41181, title = {Multiparameter pointwise ergodic theorems for Markov operators on L$\infty$.}, journal = {Publicacions Matem\`atiques}, volume = {38}, year = {1994}, pages = {395-410}, mrnumber = {MR1316635}, zbl = {0826.60026}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41181} }
Sato, Ryotaro. Multiparameter pointwise ergodic theorems for Markov operators on L∞.. Publicacions Matemàtiques, Tome 38 (1994) pp. 395-410. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41181/