Let F be a singular Riemannian foliation on a compact connected Riemannian manifold M. We demonstrate that global foliated vector fields generate a distribution tangent to the strata defined by the closures of leaves of F and which, in each stratum, is transverse to these closures of leaves.
@article{urn:eudml:doc:41178,
title = {Pierrot's theorem for singular Riemannian foliations.},
journal = {Publicacions Matem\`atiques},
volume = {38},
year = {1994},
pages = {433-439},
mrnumber = {MR1316638},
zbl = {0835.57019},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41178}
}
Wolak, Robert A. Pierrot's theorem for singular Riemannian foliations.. Publicacions Matemàtiques, Tome 38 (1994) pp. 433-439. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41178/