We present a generalized degree theory for continuous maps f: (D, ∂D) → (E, E0), where E is a normed vectorial space, D is an open subset of Rk x E such that p1(D) is bounded in Rk and f is a compact perturbation of the second projection p2: Rk x E → E.
@article{urn:eudml:doc:41162, title = {Generalized degree in normed spaces.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {157-166}, zbl = {0805.47059}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41162} }
Romero Ruiz del Portal, Francisco. Generalized degree in normed spaces.. Publicacions Matemàtiques, Tome 36 (1992) pp. 157-166. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41162/