Let A be a finite abelian group and G = A x 〈b〉, b2 = 1, ab = a-1, ∀a ∈ A. We find generators up to finite index of the unitary subgroup of ZG. In fact, the generators are the bicyclic units. For an arbitrary group G, let B2(ZG) denote the group generated by the bicyclic units. We classify groups G such that B2(ZG) is unitary.
@article{urn:eudml:doc:41158, title = {Unitary subgroup of integral group rings.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {197-204}, zbl = {0778.16013}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41158} }
Bovdi, Adalbert A.; Sehgal, Sudarshan K. Unitary subgroup of integral group rings.. Publicacions Matemàtiques, Tome 36 (1992) pp. 197-204. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41158/