Unitary subgroup of integral group rings.
Bovdi, Adalbert A. ; Sehgal, Sudarshan K.
Publicacions Matemàtiques, Tome 36 (1992), p. 197-204 / Harvested from Biblioteca Digital de Matemáticas

Let A be a finite abelian group and G = A x 〈b〉, b2 = 1, ab = a-1, ∀a ∈ A. We find generators up to finite index of the unitary subgroup of ZG. In fact, the generators are the bicyclic units. For an arbitrary group G, let B2(ZG) denote the group generated by the bicyclic units. We classify groups G such that B2(ZG) is unitary.

Publié le : 1992-01-01
DMLE-ID : 3705
@article{urn:eudml:doc:41158,
     title = {Unitary subgroup of integral group rings.},
     journal = {Publicacions Matem\`atiques},
     volume = {36},
     year = {1992},
     pages = {197-204},
     zbl = {0778.16013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41158}
}
Bovdi, Adalbert A.; Sehgal, Sudarshan K. Unitary subgroup of integral group rings.. Publicacions Matemàtiques, Tome 36 (1992) pp. 197-204. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41158/