In this paper, we study the behaviour near the boundary of the complex tangent coefficients of a closed positive current in a bounded domain of C3 with C∞ boundary. Assuming that the current satisfies the Blaschke condition, we give a condition on the complex tangent coefficients which is better than the one which can be proved using the pseudo-distance introduced by A. Nagel, E. Stein and S. Wainger (in analogy with the case of domains in C2). Moreover, when the domain is supposed to be pseudoconvex, we show how our condition is related to D. Catlin's multitype.
@article{urn:eudml:doc:41148, title = {Une estimation des coefficients tangents d'un courant positif ferm\'e dans un domaine de C3.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {319-349}, zbl = {0776.32004}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41148} }
Charpentier, Philippe.; Dupain, Yves. Une estimation des coefficients tangents d'un courant positif fermé dans un domaine de C3.. Publicacions Matemàtiques, Tome 36 (1992) pp. 319-349. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41148/