We apply the Chebyshev coefficients λf and λb, recently introduced by the authors, to obtain some results related to certain geometric properties of Banach spaces. We prove that a real normed space E is an L1-predual if and only if λf(E) = 1/2, and that if a (real or complex) normed space E is a P1 space, then λb(E) equals λb(K), where K is the ground field of E.
@article{urn:eudml:doc:41142, title = {Chebyshev coficients for L1-preduals and for spaces with the extension property.}, journal = {Publicacions Matem\`atiques}, volume = {34}, year = {1990}, pages = {341-347}, zbl = {0724.46021}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41142} }
Bayod Bayod, José Manuel; Masa Noceda, María Concepción. Chebyshev coficients for L1-preduals and for spaces with the extension property.. Publicacions Matemàtiques, Tome 34 (1990) pp. 341-347. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41142/