Chebyshev coficients for L1-preduals and for spaces with the extension property.
Bayod Bayod, José Manuel ; Masa Noceda, María Concepción
Publicacions Matemàtiques, Tome 34 (1990), p. 341-347 / Harvested from Biblioteca Digital de Matemáticas

We apply the Chebyshev coefficients λf and λb, recently introduced by the authors, to obtain some results related to certain geometric properties of Banach spaces. We prove that a real normed space E is an L1-predual if and only if λf(E) = 1/2, and that if a (real or complex) normed space E is a P1 space, then λb(E) equals λb(K), where K is the ground field of E.

Publié le : 1990-01-01
DMLE-ID : 3692
@article{urn:eudml:doc:41142,
     title = {Chebyshev coficients for L1-preduals and for spaces with the extension property.},
     journal = {Publicacions Matem\`atiques},
     volume = {34},
     year = {1990},
     pages = {341-347},
     zbl = {0724.46021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41142}
}
Bayod Bayod, José Manuel; Masa Noceda, María Concepción. Chebyshev coficients for L1-preduals and for spaces with the extension property.. Publicacions Matemàtiques, Tome 34 (1990) pp. 341-347. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41142/