We study the weak dimension of a group-graded ring using methods developed in [B1], [Q] and [R]. We prove that if R is a G-graded ring with G locally finite and the order of every subgroup of G is invertible in R, then the graded weak dimension of R is equal to the ungraded one.
@article{urn:eudml:doc:41125,
title = {Weak dimension of group-graded rings.},
journal = {Publicacions Matem\`atiques},
volume = {34},
year = {1990},
pages = {209-216},
zbl = {0708.16011},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41125}
}
Río, Angel del. Weak dimension of group-graded rings.. Publicacions Matemàtiques, Tome 34 (1990) pp. 209-216. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41125/