We study the weak dimension of a group-graded ring using methods developed in [B1], [Q] and [R]. We prove that if R is a G-graded ring with G locally finite and the order of every subgroup of G is invertible in R, then the graded weak dimension of R is equal to the ungraded one.
@article{urn:eudml:doc:41125, title = {Weak dimension of group-graded rings.}, journal = {Publicacions Matem\`atiques}, volume = {34}, year = {1990}, pages = {209-216}, zbl = {0708.16011}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41125} }
Río, Angel del. Weak dimension of group-graded rings.. Publicacions Matemàtiques, Tome 34 (1990) pp. 209-216. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41125/