We consider the problem of whether the union of complex hyperplanes can be a subset of a zero variety for the Hardy classes of the ball. A sufficient condition is found, consisting in a strong geometric separatedness requirement, together with a quantitative requirement slightly stronger than the necessary condition for Nevanlinna class zero varieties.
@article{urn:eudml:doc:41119, title = {Subsets of Hardy-class zero sets in the ball.}, journal = {Publicacions Matem\`atiques}, volume = {34}, year = {1990}, pages = {135-144}, zbl = {0723.32004}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41119} }
Thomas, Pascal J. Subsets of Hardy-class zero sets in the ball.. Publicacions Matemàtiques, Tome 34 (1990) pp. 135-144. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41119/