The topological centralizers of Toeplitz flows satisfying a condition (Sh) and their Z2-extensions are described. Such Toeplitz flows are topologically coalescent. If {q0, q1, ...} is a set of all except at least one prime numbers and I0, I1, ... are positive integers then the direct sum ⊕i=0 ∞ Zqi|i ⊕ Z can be the topological centralizer of a Toeplitz flow.
@article{urn:eudml:doc:41113,
title = {The topological centralizers of Toeplitz flows and their Z2-extensions.},
journal = {Publicacions Matem\`atiques},
volume = {34},
year = {1990},
pages = {45-65},
zbl = {0731.54027},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41113}
}
Bulatek, Wojciech; Kwiatkowski, Jan. The topological centralizers of Toeplitz flows and their Z2-extensions.. Publicacions Matemàtiques, Tome 34 (1990) pp. 45-65. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41113/