The topological centralizers of Toeplitz flows satisfying a condition (Sh) and their Z2-extensions are described. Such Toeplitz flows are topologically coalescent. If {q0, q1, ...} is a set of all except at least one prime numbers and I0, I1, ... are positive integers then the direct sum ⊕i=0 ∞ Zqi|i ⊕ Z can be the topological centralizer of a Toeplitz flow.
@article{urn:eudml:doc:41113, title = {The topological centralizers of Toeplitz flows and their Z2-extensions.}, journal = {Publicacions Matem\`atiques}, volume = {34}, year = {1990}, pages = {45-65}, zbl = {0731.54027}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41113} }
Bulatek, Wojciech; Kwiatkowski, Jan. The topological centralizers of Toeplitz flows and their Z2-extensions.. Publicacions Matemàtiques, Tome 34 (1990) pp. 45-65. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41113/