A ring is said to be strongly right bounded if every nonzero right ideal contains a nonzero ideal. In this paper strongly right bounded rings are characterized, conditions are determined which ensure that the split-null (or trivial) extension of a ring is strongly right bounded, and we characterize strongly right bounded right quasi-continuous split-null extensions of a left faithful ideal over a semiprime ring. This last result partially generalizes a result of C. Faith concerning split-null extensions of commutative FPF rings.
@article{urn:eudml:doc:41112, title = {Split-null extensions of strongly right bounded rings.}, journal = {Publicacions Matem\`atiques}, volume = {34}, year = {1990}, pages = {37-44}, zbl = {0721.16018}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41112} }
Birkenmeier, Gary F. Split-null extensions of strongly right bounded rings.. Publicacions Matemàtiques, Tome 34 (1990) pp. 37-44. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41112/