We show that every closed subset of CN that has finite (2N - 2)-dimensional measure is a removable set for holomorphic functions, and we obtain a related result on the ball.
@article{urn:eudml:doc:41101, title = {Removable sets for holomorphic functions of several complex variables.}, journal = {Publicacions Matem\`atiques}, volume = {33}, year = {1989}, pages = {345-362}, zbl = {0692.32010}, mrnumber = {MR1030972}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41101} }
Stout, Edgar Lee. Removable sets for holomorphic functions of several complex variables.. Publicacions Matemàtiques, Tome 33 (1989) pp. 345-362. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41101/