Removable sets for holomorphic functions of several complex variables.
Stout, Edgar Lee
Publicacions Matemàtiques, Tome 33 (1989), p. 345-362 / Harvested from Biblioteca Digital de Matemáticas

We show that every closed subset of CN that has finite (2N - 2)-dimensional measure is a removable set for holomorphic functions, and we obtain a related result on the ball.

Publié le : 1989-01-01
DMLE-ID : 3655
@article{urn:eudml:doc:41101,
     title = {Removable sets for holomorphic functions of several complex variables.},
     journal = {Publicacions Matem\`atiques},
     volume = {33},
     year = {1989},
     pages = {345-362},
     zbl = {0692.32010},
     mrnumber = {MR1030972},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41101}
}
Stout, Edgar Lee. Removable sets for holomorphic functions of several complex variables.. Publicacions Matemàtiques, Tome 33 (1989) pp. 345-362. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41101/