An elementary proof of the following theorem is given:
THEOREM. Let M be a compact connected surface without boundary. Consider a C∞ action of Rn on M. Then, if the Euler-Poincaré characteristic of M is non zero there exists a fixed point.
@article{urn:eudml:doc:41091,
title = {An elementary proof of a Lima's theorem for surfaces.},
journal = {Publicacions Matem\`atiques},
volume = {33},
year = {1989},
pages = {555-557},
zbl = {0698.57011},
mrnumber = {MR1038490},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41091}
}
Turiel Sandín, Francisco Javier. An elementary proof of a Lima's theorem for surfaces.. Publicacions Matemàtiques, Tome 33 (1989) pp. 555-557. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41091/