Let F be a transversely holomorphic foliation on a compact manifold. We show the existence of a versal space for those deformations of F which keep fixed its differentiable type if F is Hermitian or if F has complex codimension one and admits a transverse projectable connection. We also prove the existence of a versal space of deformations for the complex structures on a Lie group invariant by a cocompact subgroup.
@article{urn:eudml:doc:41086, title = {D\'eformations des feuilletages transversalement holomorphes \`a type diff\'erentiable fix\'e.}, journal = {Publicacions Matem\`atiques}, volume = {33}, year = {1989}, pages = {485-500}, mrnumber = {MR1038485}, zbl = {0728.32013}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41086} }
El Kacimi Alaoui, A.; Nicolau, Marcel. Déformations des feuilletages transversalement holomorphes à type différentiable fixé.. Publicacions Matemàtiques, Tome 33 (1989) pp. 485-500. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41086/