Regular Poisson structures with fixed characteristic foliation F are described by means of foliated symplectic forms. Associated to each of these structures, there is a class in the second group of foliated cohomology H2(F). Using a foliated version of Moser's lemma, we study the isotopy classes of these structures in relation with their cohomology class. Explicit examples, with dim F = 2, are described.
@article{urn:eudml:doc:41082, title = {Lemme de Moser feuillet\'e et clasifications des vari\'et\'es de Poisson r\'eguli\`eres.}, journal = {Publicacions Matem\`atiques}, volume = {33}, year = {1989}, pages = {423-430}, mrnumber = {MR1038481}, zbl = {0716.58011}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41082} }
Héctor, G.; Macías, E.; Saralegui, M. Lemme de Moser feuilleté et clasifications des variétés de Poisson régulières.. Publicacions Matemàtiques, Tome 33 (1989) pp. 423-430. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41082/