The purpose of this note is to give an example of a singular Poisson structure on R2 which admits a symplectic realization by a Lie groupoid.
@article{urn:eudml:doc:41079,
title = {Sur l'int\'egration symplectique de la structure de Poisson singuli\`ere $\Lambda$ = (x2 + y2) $\partial$/$\partial$x $\Lambda$ $\partial$/$\partial$y de R2.},
journal = {Publicacions Matem\`atiques},
volume = {33},
year = {1989},
pages = {411-415},
mrnumber = {MR1038479},
zbl = {0704.58018},
language = {fr},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41079}
}
Alcalde Cuesta, Fernando; Dazord, Pierre; Hector, Gilbert. Sur l'intégration symplectique de la structure de Poisson singulière Λ = (x2 + y2) ∂/∂x Λ ∂/∂y de R2.. Publicacions Matemàtiques, Tome 33 (1989) pp. 411-415. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41079/