All rings considered are commutative with unit. A ring R is SISI (in Vámos' terminology) if every subdirectly irreducible factor ring R/I is self-injective. SISI rings include Noetherian rings, Morita rings and almost maximal valuation rings ([V1]). In [F3] we raised the question of whether a polynomial ring R[x] over a SISI ring R is again SISI. In this paper we show this is not the case.
@article{urn:eudml:doc:41069, title = {Polynomial rings over Jacobson-Hilbert rings.}, journal = {Publicacions Matem\`atiques}, volume = {33}, year = {1989}, pages = {85-97}, zbl = {0699.13011}, mrnumber = {MR1004227}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41069} }
Faith, Carl. Polynomial rings over Jacobson-Hilbert rings.. Publicacions Matemàtiques, Tome 33 (1989) pp. 85-97. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41069/