On the best choice of a damping sequence in iterative optimization methods.
Vaserstein, Leonid N.
Publicacions Matemàtiques, Tome 32 (1988), p. 275-287 / Harvested from Biblioteca Digital de Matemáticas

Some iterative methods of mathematical programming use a damping sequence {αt} such that 0 ≤ αt ≤ 1 for all t, αt → 0 as t → ∞, and Σ αt = ∞. For example, αt = 1/(t+1) in Brown's method for solving matrix games. In this paper, for a model class of iterative methods, the convergence rate for any damping sequence {αt} depending only on time t is computed. The computation is used to find the best damping sequence.

Publié le : 1988-01-01
DMLE-ID : 3618
@article{urn:eudml:doc:41060,
     title = {On the best choice of a damping sequence in iterative optimization methods.},
     journal = {Publicacions Matem\`atiques},
     volume = {32},
     year = {1988},
     pages = {275-287},
     zbl = {0657.90100},
     mrnumber = {MR0975902},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41060}
}
Vaserstein, Leonid N. On the best choice of a damping sequence in iterative optimization methods.. Publicacions Matemàtiques, Tome 32 (1988) pp. 275-287. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41060/