Let M be the Hardy-Littlewood maximal operator defined by:
Mf(x) = supx ∈ Q 1/|Q| ∫Q |f| dx, (f ∈ Lloc(Rn)),
where the supreme is taken over all cubes Q containing x and |Q| is the Lebesgue measure of Q. In this paper we characterize the Orlicz spaces Lφ*, associated to N-functions φ, such that M is bounded in Lφ*. We prove that this boundedness is equivalent to the complementary N-function ψ of φ satisfying the Δ2-condition in [0,∞), that is, sups>0 ψ(2s) / ψ(s) < ∞.
@article{urn:eudml:doc:41058, title = {Orlicz spaces for which the Hardy-Littlewood maximal operators is bounded.}, journal = {Publicacions Matem\`atiques}, volume = {32}, year = {1988}, pages = {261-266}, mrnumber = {MR0975900}, zbl = {0685.46016}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41058} }
Gallardo, Diego. Orlicz spaces for which the Hardy-Littlewood maximal operators is bounded.. Publicacions Matemàtiques, Tome 32 (1988) pp. 261-266. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41058/