Locally graded groups with certain minimal conditions for subgroups (II).
Otal, Javier ; Peña, Juan Manuel
Publicacions Matemàtiques, Tome 32 (1988), p. 151-157 / Harvested from Biblioteca Digital de Matemáticas

This paper deals with one of the ways of studying infinite groups many of whose subgroups have a prescribed property, namely the consideration of minimal conditions. If P is a theoretical property of groups and subgroups, we show that a locally graded group P satisfies the minimal conditions for subgroups not having P if and only if either G is a Cernikov group or every subgroup of G satisfies P, for certain values of P concerning normality, nilpotency and related ideas.

Publié le : 1988-01-01
DMLE-ID : 3610
@article{urn:eudml:doc:41052,
     title = {Locally graded groups with certain minimal conditions for subgroups (II).},
     journal = {Publicacions Matem\`atiques},
     volume = {32},
     year = {1988},
     pages = {151-157},
     zbl = {0662.20028},
     mrnumber = {MR0975892},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41052}
}
Otal, Javier; Peña, Juan Manuel. Locally graded groups with certain minimal conditions for subgroups (II).. Publicacions Matemàtiques, Tome 32 (1988) pp. 151-157. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41052/