On the smoothness of Levi-foliations.
Barrett, D. E. ; Fornaess, John Erik
Publicacions Matemàtiques, Tome 32 (1988), p. 171-177 / Harvested from Biblioteca Digital de Matemáticas

We study the regularity of the induced foliation of a Levi-flat hypersurface in Cn, showing that the foliation is as many times continuously differentiable as the hypersurface itself. The key step in the proof given here is the construction of a certain family of approximate plurisubharmonic defining functions for the hypersurface in question.

Publié le : 1988-01-01
DMLE-ID : 3608
@article{urn:eudml:doc:41049,
     title = {On the smoothness of Levi-foliations.},
     journal = {Publicacions Matem\`atiques},
     volume = {32},
     year = {1988},
     pages = {171-177},
     zbl = {0663.32014},
     mrnumber = {MR0975896},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41049}
}
Barrett, D. E.; Fornaess, John Erik. On the smoothness of Levi-foliations.. Publicacions Matemàtiques, Tome 32 (1988) pp. 171-177. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41049/