Existence and stability of periodic solutions for a nonlocal evolution population problem.
Badii, Maurizio
RACSAM, Tome 99 (2005), p. 227-234 / Harvested from Biblioteca Digital de Matemáticas

The theory of maximal monotone operators is applied to prove the existence of weak periodic solutions for a nonlinear nonlocal problem. The stability of these solutions is a consequence of the Lipschitz continuous assumption on the diffusivity matrix and the death rate.

La teoría de operadores monótonos maximales se aplica para demostrar la existencia de soluciones periódicas débiles de problemas no lineales y no locales. La estabilidad de estas soluciones es consecuencia de la suposición de la continuidad Lipschitz en la matriz de difusividad y de la tasa de defunción.

Publié le : 2005-01-01
DMLE-ID : 3577
@article{urn:eudml:doc:41014,
     title = {Existence and stability of periodic solutions for a nonlocal evolution population problem.},
     journal = {RACSAM},
     volume = {99},
     year = {2005},
     pages = {227-234},
     mrnumber = {MR2216105},
     zbl = {1105.35006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41014}
}
Badii, Maurizio. Existence and stability of periodic solutions for a nonlocal evolution population problem.. RACSAM, Tome 99 (2005) pp. 227-234. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41014/