Inequalities concerning the integral of |∇u|2 on the subsets where |u(x)| is greater than k can be used in order to prove regularity properties of the function u. This method was introduced by Ennio De Giorgi e Guido Stampacchia for the study of the regularity of the solutions of Dirichlet problems.
Adecuadas desigualdades sobre la integral de |∇u|2 extendida a los subconjuntos donde |u(x)| es mayor que k pueden ser usadas para obtener propiedades de regularidad de la función u. Este método fue introducido por Ennio De Giorgi y Guido Stampacchia para el estudio de la regularidad de las soluciones de problemas de Dirichlet.
@article{urn:eudml:doc:40985, title = {The summability of solutions to variational problems since Guido Stampacchia.}, journal = {RACSAM}, volume = {97}, year = {2003}, pages = {413-421}, mrnumber = {MR2125840}, zbl = {1129.35371}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40985} }
Boccardo, Lucio. The summability of solutions to variational problems since Guido Stampacchia.. RACSAM, Tome 97 (2003) pp. 413-421. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40985/