The three-space-problem for locally-m-convex algebras.
Dierolf, Susanne ; Heintz, Thomas
RACSAM, Tome 97 (2003), p. 223-227 / Harvested from Biblioteca Digital de Matemáticas

We prove that a locally convex algebra A with jointly continuous multiplication is already locally-m-convex, if A contains a two-sided ideal I such that both I and the quotient algebra A/I are locally-m-convex. An application to the behaviour of the associated locally-m-convex topology on ideals is given.

Probamos que un álgebra localmente convexa con multiplicación continua es automáticamente localmente-m-convexa, si contiene un ideal bilátero I tal que tanto I como el álgebra cociente A/I son localmente-m-convexas. Se presenta una aplicación al comportamiento de la topología localmente-m-convexa asociada en los ideales.

Publié le : 2003-01-01
DMLE-ID : 3538
@article{urn:eudml:doc:40971,
     title = {The three-space-problem for locally-m-convex algebras.},
     journal = {RACSAM},
     volume = {97},
     year = {2003},
     pages = {223-227},
     mrnumber = {MR2068175},
     zbl = {1076.46038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40971}
}
Dierolf, Susanne; Heintz, Thomas. The three-space-problem for locally-m-convex algebras.. RACSAM, Tome 97 (2003) pp. 223-227. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40971/