We prove that a locally convex algebra A with jointly continuous multiplication is already locally-m-convex, if A contains a two-sided ideal I such that both I and the quotient algebra A/I are locally-m-convex. An application to the behaviour of the associated locally-m-convex topology on ideals is given.
Probamos que un álgebra localmente convexa con multiplicación continua es automáticamente localmente-m-convexa, si contiene un ideal bilátero I tal que tanto I como el álgebra cociente A/I son localmente-m-convexas. Se presenta una aplicación al comportamiento de la topología localmente-m-convexa asociada en los ideales.
@article{urn:eudml:doc:40971, title = {The three-space-problem for locally-m-convex algebras.}, journal = {RACSAM}, volume = {97}, year = {2003}, pages = {223-227}, mrnumber = {MR2068175}, zbl = {1076.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40971} }
Dierolf, Susanne; Heintz, Thomas. The three-space-problem for locally-m-convex algebras.. RACSAM, Tome 97 (2003) pp. 223-227. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40971/