Natural graded Lie brackets on the space of cochains of n-Leibniz and n-Lie algebras are introduced. It turns out that these brackets agree under the natural embedding introduced by Gautheron. Moreover, n-Leibniz and n-Lie algebras turn to be canonical structures for these brackets in a similar way in which associative algebras (respectively, Lie algebras) are canonical structures for the Gerstenhaber bracket (respectively, Nijenhuis-Richardson bracket).
@article{urn:eudml:doc:40888, title = {Cohomology ring of n-Lie algebras.}, journal = {Extracta Mathematicae}, volume = {20}, year = {2005}, pages = {219-232}, zbl = {1163.17300}, mrnumber = {MR2195202}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40888} }
Rotkiewicz, Mikolaj. Cohomology ring of n-Lie algebras.. Extracta Mathematicae, Tome 20 (2005) pp. 219-232. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40888/