Predictive sample reuse methods usually applied in low structure aparametric paradigms are shown to be useful in certain high structure situations when conjoined with a Bayesian approach. Particular attention is focused on the incomplete data situation for which two alternative sample reuse approaches are devised. The first involves differential weighting and the second a recursive sample reuse algorithm. These are applied to censored exponential survival data. The exponential approach appears to be preferable from both a computational and modelling viewpoint.
@article{urn:eudml:doc:40839, title = {Predictive sample reuse techniques for censored data.}, journal = {Trabajos de Estad\'\i stica e Investigaci\'on Operativa}, volume = {31}, year = {1980}, pages = {433-452}, zbl = {0468.62030}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40839} }
Geisser, Seymour. Predictive sample reuse techniques for censored data.. Trabajos de Estadística e Investigación Operativa, Tome 31 (1980) pp. 433-452. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40839/