Each operator in L (lp,lr) (1 ≤ r < p < ∞) is compact.
Grzaslewicz, Ryszard
Collectanea Mathematica, Tome 48 (1997), p. 539-541 / Harvested from Biblioteca Digital de Matemáticas

It is known that each bounded operator from lp → lris compact. The purpose of this paper is to present a very simple proof of this useful fact.

Publié le : 1997-01-01
DMLE-ID : 337
@article{urn:eudml:doc:40784,
     title = {Each operator in L (lp,lr) (1 $\leq$ r \&lt; p \&lt; $\infty$) is compact.},
     journal = {Collectanea Mathematica},
     volume = {48},
     year = {1997},
     pages = {539-541},
     zbl = {0903.46019},
     mrnumber = {MR1602588},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40784}
}
Grzaslewicz, Ryszard. Each operator in L (lp,lr) (1 ≤ r < p < ∞) is compact.. Collectanea Mathematica, Tome 48 (1997) pp. 539-541. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40784/