A Bayesian solution is provided to the problem of testing whether an entire finite population shows a certain characteristic, given that all the elements of a random sample are observed to have it. This is obtained as a direct application of existing theory and, it is argued, improves upon Jeffrey's solution.
Se ofrece una nueva solución bayesiana al problema de contrastar la hipótesis de que todos los miembros de una población tienen una determinada característica, cuando se ha observado que la tienen todos los elementos de un subconjunto suyo escogido al azar.
@article{urn:eudml:doc:40774, title = {On a famous problem of induction.}, journal = {Trabajos de Estad\'\i stica e Investigaci\'on Operativa}, volume = {36}, year = {1985}, pages = {24-30}, zbl = {0731.62046}, mrnumber = {MR0830143}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40774} }
Bernardo, José M. On a famous problem of induction.. Trabajos de Estadística e Investigación Operativa, Tome 36 (1985) pp. 24-30. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40774/