Estimation of the spectral density of a homogeneous random stable discrete time field.
Demesh, Nicolay N. ; Chekhmenok, Sergey L.
SORT, Tome 29 (2005), p. 101-118 / Harvested from Biblioteca Digital de Matemáticas

In earlier papers, 2π-periodic spectral data windows have been used in spectral estimation of discrete- time random fields having finite second-order moments. In this paper, we show that 2π-periodic spectral windows can also be used to construct estimates of the spectral density of a homogeneous symmetric α-stable discrete-time random field. These fields do not have second-order moments if 0 < α < 2. We construct an estimate of the spectrum, calculate the asymptotic mean and variance, and prove weak consistency of our estimate.

Publié le : 2005-01-01
DMLE-ID : 3085
@article{urn:eudml:doc:40468,
     title = {Estimation of the spectral density of a homogeneous random stable discrete time field.},
     journal = {SORT},
     volume = {29},
     year = {2005},
     pages = {101-118},
     mrnumber = {MR2160538},
     zbl = {1274.60161},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40468}
}
Demesh, Nicolay N.; Chekhmenok, Sergey L. Estimation of the spectral density of a homogeneous random stable discrete time field.. SORT, Tome 29 (2005) pp. 101-118. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40468/