For Banach Jordan algebras and pairs the spectrum is proved to be related to the spectrum in a Banach algebra. Consequently, it is an analytic multifunction, upper semicontinuous with a dense G delta-set of points of continuity, and the scarcity theorem holds.
@article{urn:eudml:doc:40317,
title = {Analytic properties of the spectrum in Banach Jordan Systems.},
journal = {Collectanea Mathematica},
volume = {47},
year = {1996},
pages = {277-284},
zbl = {0865.46034},
mrnumber = {MR1437656},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40317}
}
Hessenberger, Gerald. Analytic properties of the spectrum in Banach Jordan Systems.. Collectanea Mathematica, Tome 47 (1996) pp. 277-284. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40317/