Robust estimation of the multiple regression is modeled by using a convex combination of Least Squares and Least Absolute Value criterions. A Bicriterion Parametric algorithm is developed for computing the corresponding estimates. The proposed procedure should be specially useful when outliers are expected. Its behavior is analyzed using some examples.
@article{urn:eudml:doc:40235, title = {Fitting a linear regression model by combining least squares and least absolute value estimation.}, journal = {Q\"uestii\'o}, volume = {19}, year = {1995}, pages = {107-121}, mrnumber = {MR1376780}, zbl = {1167.62443}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40235} }
Allende, Sira; Bouza, Carlos; Romero, Isidro. Fitting a linear regression model by combining least squares and least absolute value estimation.. Qüestiió, Tome 19 (1995) pp. 107-121. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40235/