Outliers in circular data: a Bayesian approach.
Arnaiz Tovar, Gonzalo ; Ruiz Rivas, Carmen
Qüestiió, Tome 10 (1986), p. 1-6 / Harvested from Biblioteca Digital de Matemáticas

The problem of outliers in circular data is studied from a Bayesian point of view. Susprising observations are identified by means of a predictive measure. On the basis of Box-Tiao methodology, the mean-shift model and some aspects of the contamination of the concentration parameter for a Von Mises distribution are analyzed. Intuitive aspects of the resultant weights and their applications in some classical examples are included.

Publié le : 1986-01-01
DMLE-ID : 2703
@article{urn:eudml:doc:40044,
     title = {Outliers in circular data: a Bayesian approach.},
     journal = {Q\"uestii\'o},
     volume = {10},
     year = {1986},
     pages = {1-6},
     mrnumber = {MR0862407},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:40044}
}
Arnaiz Tovar, Gonzalo; Ruiz Rivas, Carmen. Outliers in circular data: a Bayesian approach.. Qüestiió, Tome 10 (1986) pp. 1-6. http://gdmltest.u-ga.fr/item/urn:eudml:doc:40044/