Let K be an ordered field and R its real closure. A semipolynomial will be defined as a function from Rn to R obtained by composition of polynomial functions and the absolute value. Every semipolynomial can be defined as a straight-line program containing only instructions with the following type: polynomial, absolute value, sup and inf and such a program will be called a semipolynomial expression. It will be proved, using the ordinary real positivstellensatz, a general real positivstellensatz concerning the semipolynomial expressions.
@article{urn:eudml:doc:39965, title = {A real nullstellensatz and positivstellensatz for the semipolynomials over an ordered field.}, journal = {Extracta Mathematicae}, volume = {7}, year = {1992}, pages = {53-58}, mrnumber = {MR1203442}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:39965} }
González-Vega, Laureano; Lombardi, Henri. A real nullstellensatz and positivstellensatz for the semipolynomials over an ordered field.. Extracta Mathematicae, Tome 7 (1992) pp. 53-58. http://gdmltest.u-ga.fr/item/urn:eudml:doc:39965/