A real nullstellensatz and positivstellensatz for the semipolynomials over an ordered field.
González-Vega, Laureano ; Lombardi, Henri
Extracta Mathematicae, Tome 7 (1992), p. 53-58 / Harvested from Biblioteca Digital de Matemáticas

Let K be an ordered field and R its real closure. A semipolynomial will be defined as a function from Rn to R obtained by composition of polynomial functions and the absolute value. Every semipolynomial can be defined as a straight-line program containing only instructions with the following type: polynomial, absolute value, sup and inf and such a program will be called a semipolynomial expression. It will be proved, using the ordinary real positivstellensatz, a general real positivstellensatz concerning the semipolynomial expressions.

Publié le : 1992-01-01
DMLE-ID : 2632
@article{urn:eudml:doc:39965,
     title = {A real nullstellensatz and positivstellensatz for the semipolynomials over an ordered field.},
     journal = {Extracta Mathematicae},
     volume = {7},
     year = {1992},
     pages = {53-58},
     mrnumber = {MR1203442},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:39965}
}
González-Vega, Laureano; Lombardi, Henri. A real nullstellensatz and positivstellensatz for the semipolynomials over an ordered field.. Extracta Mathematicae, Tome 7 (1992) pp. 53-58. http://gdmltest.u-ga.fr/item/urn:eudml:doc:39965/