Let X and Y be infinite dimensional Banach spaces and let L(X,Y) be the class of all (linear continuous) operators acting between X and Y. Mil'man [5] introduced the isometry spectrum I(T) of T ∈ L(X,Y) in the following way:
I(T) = {α ≥ 0: ∀ ε > 0, ∃M ∈ S∞(X), ∀x ∈ SM, | ||Tx|| - α | < ε}},
where S∞(X) is the set of all infinite dimensional closed subspaces of X and SM := {x ∈ M: ||x|| = 1} is the unit sphere of M ∈ S∞(X). (...)
@article{urn:eudml:doc:39933, title = {Note on operational quantities and Mil'man isometry spectrum.}, journal = {Extracta Mathematicae}, volume = {6}, year = {1991}, pages = {129-131}, mrnumber = {MR1185358}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:39933} }
González, Manuel; Martinón, Antonio. Note on operational quantities and Mil'man isometry spectrum.. Extracta Mathematicae, Tome 6 (1991) pp. 129-131. http://gdmltest.u-ga.fr/item/urn:eudml:doc:39933/