Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.
Fernández Castillo, Jesús M.
Extracta Mathematicae, Tome 5 (1990), p. 153-155 / Harvested from Biblioteca Digital de Matemáticas

A sequence (xn) in a Banach space X is said to be weakly-p-summable, 1 ≤ p < ∞, when for each x* ∈ X*, (x*xn) ∈ lp. We shall say that a sequence (xn) is weakly-p-convergent if for some x ∈ X, (xn - x) is weakly-p-summable.

Publié le : 1990-01-01
DMLE-ID : 2573
@article{urn:eudml:doc:39899,
     title = {Absolutely ($\infty$,p) summing and weakly-p-compact operators in Banach spaces.},
     journal = {Extracta Mathematicae},
     volume = {5},
     year = {1990},
     pages = {153-155},
     zbl = {0744.47015},
     mrnumber = {MR1125690},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:39899}
}
Fernández Castillo, Jesús M. Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.. Extracta Mathematicae, Tome 5 (1990) pp. 153-155. http://gdmltest.u-ga.fr/item/urn:eudml:doc:39899/