The paper deals with special partitions of whole numbers in the following form: given a sequence of pairs {[Gi;Di]} of positive integers in which the Gi form a strictly increasing sequence, sums of the form ∑niGi, with 0 ≤ ni ≤ Di, are considered. The correspondence
[nk ... n0] → ∑i≤k niGi
defines then a mapping α from a set M of numerals, called Neugebauer symbols, satisfying 0 ≤ ni ≤ Di, into the set W of all non-negative integers. In M, initial zeros are supressed and M is ordered in the usual numerical order. Such an α is called a gauged scheme.
@article{urn:eudml:doc:39825, title = {General numeration I. Gauged schemes.}, journal = {Revista Matem\'atica Hispanoamericana}, volume = {42}, year = {1982}, pages = {38-50}, zbl = {0562.05010}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:39825} }
Dubois, D. W. General numeration I. Gauged schemes.. Revista Matemática Hispanoamericana, Tome 42 (1982) pp. 38-50. http://gdmltest.u-ga.fr/item/urn:eudml:doc:39825/