Given a real separable Hilbert space H, we denote with G(H) the geometry of closed linear subspaces of H.
The strong convergence of sequences of subspaces is shown to be a L*-convergence and the weak convergence a L-convergence.
The smallest L*-convergence containing the weak convergence is found, and the orthogonal image of the strong convergence, which is also a L*-convergence, is defined.
@article{urn:eudml:doc:39787, title = {L y L*-convergencias en G(H).}, journal = {Revista Matem\'atica Hispanoamericana}, volume = {41}, year = {1981}, pages = {97-101}, zbl = {0512.46026}, language = {es}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:39787} }
Obras Loscertales y Nasarre, M.ª Carmen de las. L y L*-convergencias en G(H).. Revista Matemática Hispanoamericana, Tome 41 (1981) pp. 97-101. http://gdmltest.u-ga.fr/item/urn:eudml:doc:39787/