Weak infinitesimal operators and stochastic differential games.
Ardanuy, Ramón ; Alcalá, A.
Stochastica, Tome 13 (1992), p. 5-12 / Harvested from Biblioteca Digital de Matemáticas

This article considers the problem of finding the optimal strategies in stochastic differential games with two players, using the weak infinitesimal operator of process xi the solution of d(xi) = f(xi,t,u1,u2)dt + sigma(xi,t,u1,u2)dW. For two-person zero-sum stochastic games we formulate the minimax solution; analogously, we perform the solution for coordination and non-cooperative stochastic differential games.

Publié le : 1992-01-01
DMLE-ID : 2011
@article{urn:eudml:doc:39276,
     title = {Weak infinitesimal operators and stochastic differential games.},
     journal = {Stochastica},
     volume = {13},
     year = {1992},
     pages = {5-12},
     zbl = {0769.90086},
     mrnumber = {MR1197322},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:39276}
}
Ardanuy, Ramón; Alcalá, A. Weak infinitesimal operators and stochastic differential games.. Stochastica, Tome 13 (1992) pp. 5-12. http://gdmltest.u-ga.fr/item/urn:eudml:doc:39276/