Quasi-equivalence of compacta and spaces of components.
Rodríguez Sanjurjo, José M.
Collectanea Mathematica, Tome 31 (1980), p. 3-10 / Harvested from Biblioteca Digital de Matemáticas

Let X, Y be two compacta with Sh(X) = Sh (Y). Then, the spaces of components of X, Y are homeomorphic. This does not happen, in general, when X, Y are quasi-equivalent. In this paper we give a sufficient condition for the existence of a homeomorphism between the spaces of components of two quasi-equivalent compacta X, Y which maps each component in a quasi-equivalent component.

Publié le : 1980-01-01
DMLE-ID : 20
@article{urn:eudml:doc:39262,
     title = {Quasi-equivalence of compacta and spaces of components.},
     journal = {Collectanea Mathematica},
     volume = {31},
     year = {1980},
     pages = {3-10},
     zbl = {0447.54037},
     mrnumber = {MR0601472},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:39262}
}
Rodríguez Sanjurjo, José M. Quasi-equivalence of compacta and spaces of components.. Collectanea Mathematica, Tome 31 (1980) pp. 3-10. http://gdmltest.u-ga.fr/item/urn:eudml:doc:39262/