On the generalizations of Siegel's fixed point theorem.
Jung, J. S. ; Chang, S. S. ; Lee, B. S. ; Cho, Y. J. ; Kang, S. M.
Mathware and Soft Computing, Tome 8 (2001), p. 5-20 / Harvested from Biblioteca Digital de Matemáticas

In this paper, we establish a new version of Siegel's fixed point theorem in generating spaces of quasi-metric family. As consequences, we obtain general versions of the Downing-Kirk's fixed point and Caristi's fixed point theorem in the same spaces. Some applications of these results to fuzzy metric spaces and probabilistic metric spaces are presented.

Publié le : 2001-01-01
DMLE-ID : 1929
@article{urn:eudml:doc:39183,
     title = {On the generalizations of Siegel's fixed point theorem.},
     journal = {Mathware and Soft Computing},
     volume = {8},
     year = {2001},
     pages = {5-20},
     zbl = {1021.47031},
     mrnumber = {MR1843686},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:39183}
}
Jung, J. S.; Chang, S. S.; Lee, B. S.; Cho, Y. J.; Kang, S. M. On the generalizations of Siegel's fixed point theorem.. Mathware and Soft Computing, Tome 8 (2001) pp. 5-20. http://gdmltest.u-ga.fr/item/urn:eudml:doc:39183/