The analytic-spectral structure of the commutant of a weighted shift operator defined on a lp space (1 ≤ p < ∞) is studied. The cases unilateral, bilateral and quasinilpotent are treated. We apply the results to study certain questions related to unicellularity, strictly cyclicity and the existence of hyperinvariant subspaces.
@article{urn:eudml:doc:38943, title = {Weighted shift operators on lp spaces.}, journal = {Stochastica}, volume = {10}, year = {1986}, pages = {29-54}, zbl = {0615.47023}, mrnumber = {MR0885060}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38943} }
Jódar, Lucas. Weighted shift operators on lp spaces.. Stochastica, Tome 10 (1986) pp. 29-54. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38943/