The analytic-spectral structure of the commutant of a weighted shift operator defined on a lp space (1 ≤ p < ∞) is studied. The cases unilateral, bilateral and quasinilpotent are treated. We apply the results to study certain questions related to unicellularity, strictly cyclicity and the existence of hyperinvariant subspaces.
@article{urn:eudml:doc:38943,
title = {Weighted shift operators on lp spaces.},
journal = {Stochastica},
volume = {10},
year = {1986},
pages = {29-54},
zbl = {0615.47023},
mrnumber = {MR0885060},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38943}
}
Jódar, Lucas. Weighted shift operators on lp spaces.. Stochastica, Tome 10 (1986) pp. 29-54. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38943/