Non-Archimedean f-rings need not be p-distributive. Moreover, if {di|i} is a subset of a non-Archimedean f-ring and a ≥ 0, the elements a vi di and vi adi need not be equal. We prove, however, that the difference is an infinitely small element when the ring has a strong unity.
@article{urn:eudml:doc:38825, title = {A note on the p-distributivity in non-Archimedean f-rings.}, journal = {Stochastica}, volume = {4}, year = {1980}, pages = {169-172}, zbl = {0453.06014}, mrnumber = {MR0599139}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38825} }
Trías Pairó, Joan. A note on the p-distributivity in non-Archimedean f-rings.. Stochastica, Tome 4 (1980) pp. 169-172. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38825/