Sobre funciones de negación en [0,1].
Esteva, Francesc ; Domingo, Xavier
Stochastica, Tome 4 (1980), p. 141-166 / Harvested from Biblioteca Digital de Matemáticas

In [12] Trillas proved that (P(X),∩,U,-n) is a quasi-Boolean algebra if and only if its negation has an additive generator. In this paper such result is generalized to PJ(X) and the symmetry of J is analized.

From the results of Esteva ([11]) weak negations on [0,1] are studied; it is proved that such functions are monotonic, non-increasing, left-continuous and symmetrical with respect to y=x. Their classification relative to C([0,1]) is also given and a canonical element of each class is found. Finally strong and weak negations on a finite J are studied.

Publié le : 1980-01-01
DMLE-ID : 1603
@article{urn:eudml:doc:38822,
     title = {Sobre funciones de negaci\'on en [0,1].},
     journal = {Stochastica},
     volume = {4},
     year = {1980},
     pages = {141-166},
     zbl = {0448.03047},
     mrnumber = {MR0599138},
     language = {es},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38822}
}
Esteva, Francesc; Domingo, Xavier. Sobre funciones de negación en [0,1].. Stochastica, Tome 4 (1980) pp. 141-166. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38822/