In this paper we define the notions of semicommutativity and semicommutativity modulo a linear subspace. We prove some results regarding the semicommutativity or semicommutativity modulo a linear subspace of a sequentially complete m-convex algebra. We show how such results can be applied in order to obtain commutativity criterions for locally m-convex algebras.
@article{urn:eudml:doc:38721, title = {Commutativity criterions in locally m-convex algebras.}, journal = {Extracta Mathematicae}, volume = {18}, year = {2003}, pages = {81-89}, zbl = {1038.46039}, mrnumber = {MR1989299}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38721} }
Toma, Aida. Commutativity criterions in locally m-convex algebras.. Extracta Mathematicae, Tome 18 (2003) pp. 81-89. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38721/