In this paper we define the notions of semicommutativity and semicommutativity modulo a linear subspace. We prove some results regarding the semicommutativity or semicommutativity modulo a linear subspace of a sequentially complete m-convex algebra. We show how such results can be applied in order to obtain commutativity criterions for locally m-convex algebras.
@article{urn:eudml:doc:38721,
title = {Commutativity criterions in locally m-convex algebras.},
journal = {Extracta Mathematicae},
volume = {18},
year = {2003},
pages = {81-89},
zbl = {1038.46039},
mrnumber = {MR1989299},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38721}
}
Toma, Aida. Commutativity criterions in locally m-convex algebras.. Extracta Mathematicae, Tome 18 (2003) pp. 81-89. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38721/