Reflexive spaces and numerical radius attaining operators.
Acosta, María D. ; Ruiz Galán, M.
Extracta Mathematicae, Tome 15 (2000), p. 247-255 / Harvested from Biblioteca Digital de Matemáticas

In this note we deal with a version of James' Theorem for numerical radius, which was already considered in [4]. First of all, let us recall that this well known classical result states that a Banach space satisfying that all the (bounded and linear) functionals attain the norm, has to be reflexive [16].

Publié le : 2000-01-01
DMLE-ID : 1429
@article{urn:eudml:doc:38628,
     title = {Reflexive spaces and numerical radius attaining operators.},
     journal = {Extracta Mathematicae},
     volume = {15},
     year = {2000},
     pages = {247-255},
     zbl = {0983.47002},
     mrnumber = {MR1823650},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38628}
}
Acosta, María D.; Ruiz Galán, M. Reflexive spaces and numerical radius attaining operators.. Extracta Mathematicae, Tome 15 (2000) pp. 247-255. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38628/